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degree of freedom, whih was not in the model originally. This newdegree of freedom an be thought of as the string slope, whih is nowpromoted into a utuating dynamial variable. Finally, we show thatthe introdution of the bare mass makes it possible to renormalize themodel.

2



1. IntrodutionThe present artile is the ontinuation of a series of artiles [1,2,3,4,5℄pursuing a program of summing planar graphs in �eld theory. Beause ofits simpliity, the theory most intensively investigated so far is the �3 the-ory, although progress has been made in extending the program to morephysial theories [6,7,8℄. The basi idea, due to 't Hooft [9℄, is to representplanar Feynman graphs on the world sheet, using a mixture of position andmomentum spae light one variables as oordinates. This representation,whih was originally non-loal, was later reformulated as a loal �eld theoryon the world sheet by introduing additional non-dynamial �elds [1℄. Theadvantage of this reformulation is that it provides a useful setup for studyingthe sum of planar Feynman graphs, sine one an then appeal to variousapproximation shemes familiar from �eld theory to investigate problems ofinterest.The problem we are going to investigate in this artile is string formationin the �3 �eld theory and the approximation sheme we are going to use is themean �eld method. Although the mean �eld method has its limitations, wehope that at least the preditions it makes about basi dynamial questionssuh as string formation are qualitatively orret. In any ase, it is a simplemethod to use and we have nothing better available at the present.The present paper an be viewed as a follow up to referene [5℄. As suh,it has a good deal of overlap with it, as well as with some of the earlier workon the same subjet. This is beause in organizing this paper, the goal wasto present a self ontained treatment, whih should be intelligible even to areader unfamiliar with the previous work on the subjet. When we previewthe rest of the paper below, we will try to make lear what is new and whatis a review of the earlier work ited at the beginning of this setion.Before getting started, it may be helpful to summarize the advanesmade in this paper in omparison to [5℄. Apart from some simpli�ationand streamlining of the treatment, there are two new features of interest.The �rst one is somewhat tehnial: The prefator 1=(2p+) in eq.(2) forthe propagator was negleted in the previous appliations of the mean �eldmethod. In the present work, this fator is taken into aount. This doese�et the details of alulations, but it does not qualitatively hange the �nalresults, onerning, for example, string formation.The seond new feature is more signi�ant. In referene [5℄, as well asin the work preeding it, the �eld theoreti bare mass was taken to be zero.1



Of ourse, in any ase, a non-zero mass is generated in higher orders ofperturbation theory, whih is uto� dependent and needs renormalization.This uto� dependene shows up in the expression for the ground state energy(eq.(56)), whih is proportional to the uto� parameter 1=a2. In the presentwork, we show how to introdue a non-zero bare mass, whih an then beused as a ounter term to anel the uto� dependent part of the groundstate energy.We would like to draw the attention of the reader to the main resultsobtained in this artile. We show that, in the uto� theory prior to renor-malization, there is string formation for large enough values of the ouplingonstant, whereas for smaller values of the oupling onstant, the model isin the perturbative �eld theory phase. We also show that physial quantitiesan be made uto� independent by introduing a suitable bare mass. Fromthe string perspetive, the physial quantities we are referring to are thestring slope and the interept. With the introdution of mass, there is againstring formation for a range of values of mass and oupling onstant, and�eld theory phase takes over when the parameters are outside this range. Animportant problem not addressed in this paper is whether string formationobserved in the uto� theory persists after renormalization.In setion 2, we briey review both the rules for Feynman graphs in thelight one variables [9℄ and the loal �eld theory on the world sheet whihgenerates these graphs [1℄. We also disuss the transformation propertiesof the �elds under a speial Lorentz boost, whih manifests itself as a saletransformation on the world sheet. Sine lak of invariane under this salingwould imply violation of Lorentz invariane, as we go along, we make surethat no suh violation ours. This is an abridged version of a more ompletedisussion given in [4℄.In the loal �eld theory disussed in setion 2, the boundary onditionson the �elds were imposed by hand. In setion 3, a more general �eld the-ory is onstruted, where the boundary onditions are enfored by meansof Lagrange multipliers. In addition, auxilliary fermioni �elds that dis-tinguish between the boundaries and the bulk are needed. To have a wellde�ned theory, we have to introdue two distint uto�s; one assoiated withthe oordinate � and the other with �. Until setion 8, we will be work-ing exlusively with the uto� theory, and all the results obtained will referto this theory. The motivation for studying the uto� theory is that it isan interesting model in its own right and also it is an indispensible pre-liminary to renormalization. This setion follows referene [5℄ losely, with2



the exeption that, unlike in [5℄, we do not impose supersymmetry on themodel. Although the use supersymmetry is an elegant way of taking areof the matter-ghost anellations, in retrospet, ghosts do not ontribute inany signi�ant way to the mean�eld alulations. In the interests brevityand simpliity, we have therefore deided to drop the ghost setor and writedown a non-supersymmetri model.The mean �eld method whih is at the basis of the present work is dis-ussed in setion 4 from the point of view of the large D limit, where D isthe dimension of the transverse spae. This setion is largely a review of thematerial developed in the earlier work. The only thing new is a brief om-parison of the determinant resulting from the integration over matter �eldswith the orresponding result well known from string theory.In setion 5, the fermioni part of the ation is diagonalized, and the twofermioni energy levels are alulated as a funtion of a parameter x, whihserves as an order parameter. It is argued that, independent of any approxi-mation sheme, a non-zero order parameter signals both string formation andondensation of Feynman graphs on the world sheet, thereby linking thesetwo phenomena. On the other hand, x = 0 orresponds to the perturbative�eld theory phase of the model. This setion is a mostly a review of thematerial overed in the previous work.In setion 6, the prefator 1=(2p+) in the propagator (eq.(2)), negletedin the previous work, is taken into aount in the leading order of the mean�eld approximation. As a result, the interation vertex beomes a funtionof the order parameter x (eq.(52)). The material overed in this setion isompletely new.In setion 7, ombining the results of the previous setions, the groundstate energy is expressed in terms of x. Minimizing this energy, we �nd thatthere is a ritial value of the oupling onstant, g = g: For g < g, theminimum is at x = 0, whereas for g > g, the minimum is at some x 6= 0. Itthen follows that, at g = g, there is a transition from the perturbative �eldtheory phase to the string phase. A onsiderable portion of this setion isnew.So far, we have been studying a model where the �eld theory bare masswas set equal to zero. In setion 8, we show how to introdue a non-zerobare mass term in the leading order of the mean �eld approximation, and weshow that, if the mass is not too large, the same piture as in the masslessase emerges: There is a g, dependent on the mass, that seperates the stringforming and perturbative phases of the model. It is also possible to use3



the bare mass as a ounter term to eliminate the uto� dependene of theground state energy. From the string perspetive, this orresponds to therenormalization of the interept. Sine, in setion 5, we have already shownthat the string slope is already �nite, at least for a free string, this is all therenormalization that is needed. The investigation of the properties of therenormalized theory, whih ould be quite di�erent from those of the uto�theory studied so far, is left for future researh. This setion is ompletelynew.All the results obtained so far were in the leading order of the mean �eldapproximation, or what is the same thing, in the leading order of large Dlimit. In setion 9, we ompute a partiular ontribution oming from thenext order of the large D limit. This ontribution is important in that it pro-vides the kineti energy term for a new propagating degree of freedom whihwas not present in the original ation. As a result, the string slope, whihwas a onstant in the leading order, beomes a dynamial �eld whih anutuate around its mean value. We end the setion with some speulativeremarks about the possible onnetion between this new dynamial �eld andthe extra dimension in AdS/CFT orrespondene [10,11℄, and how it ouldpossibly interpolate between \hard" and \soft" high energy proesses. Thissetion largely overlaps with the orresponding material in [5℄; it is inludedhere for the sake of ompleteness.Finally, Appendies A and B ontain some of the additional details of themean �eld alulations developed in setions 6 and 8.2. A Brief ReviewThe Feynman graphs of a massive �3 theory have a partiularly simpleform in the mixed lightone representation of 't Hooft [9℄. In this represen-tation, the evolution parameter, � , is x+, and the onjugate Hamiltonian isp�. The Minkowski evolution operator is given byT = exp(�ix+p�): (1)The notation is suh that a Minkowski four vetor v� has the light oneomponents (v+; v�;v), where v� = (v0� v1)=p2, and boldfae letters labelthe transverse diretions. A propagator that arries momentum p is pituredas a horizontal strip of width p+ and length � = x+, bounded by two solidlines on the world sheet (Fig.1). The solid lines forming the boundary arry4
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Figure 1: The Propagatortransverse momenta q1 and q2, withp = q1 � q2;and the orresponding propagator is given by�(p) = �(�)2p+ exp �i �2p+ (p2 +m2)! : (2)More ompliated graphs onsist of several horizontal solid line segments(Fig.2). A fator of g, the oupling onstant, is assoiated with the beginningand the end of eah line segment, where the interation takes plae. Finally,one has to integrate over the positions of the interation verties, as well asthe momenta arried by the solid lines. A typial light one graph is pituredin Fig.2.It was shown in [1℄ that the light one Feynman rules desribed abovean be reprodued by a loal world sheet �eld theory. The world sheet isparametrized by the oordinates � along the p+ diretion and � along thex+ diretion, and the transverse momentum q is promoted to a bosoni �eldq(�; �) on the world sheet. In addition, two fermioni �elds (ghosts) b(�; �)and (�; �) are needed. In ontrast to q, whih has D omponents, b and eah have D=2 omponents. Here, D is the dimension of the transverse5
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τFigure 2: A Typial Graphspae, assumed to be even. Here and in the next setion, we will onsider�rst onsider the zero mass ase for the sake of simpliity, and postpone thedisussion of the the massive theory to setion (8). The ation on the worldsheet for the massless theory(m = 0), is given byS0 = Z p+0 d� Z �f�i d� �b0 � 0 � 12 q02� ; (3)where the prime denotes derivative with respet to �. This ation is supple-mented by Dirihlet boundary onditions_q = 0; b =  = 0; (4)on the solid lines, where the dot denotes derivative with respet to � . Itwas shown in [1℄ that if the equations of motion for q are solved subjet tothe above boundary onditions, the resulting lassial ation reprodues theexponential fator in eq.(2). The unwanted quantum ontribution�D2 det(�2�)is anelled by the orresponding determinant resulting from integrating overghosts.The ation formulation desribed above was extensively used in the pre-vious work [2,3,4,5℄. It has, however, two defets: The prefator 1=(2p+) ineq.(2) is missing and a non-zero bare mass annot be aomodated. Sinethere is no symmetry foring the renormalized mass to be zero, this means6



that the mass ounter term needed for renormalization annot be introdued.In setions (6) and (8), we will show how to overome both of these problemsin the ontext of the mean �eld approximation.Finally, we would like to disuss briey the question of Lorentz invariane.This is a non-trivial problem, sine the use of the light one variables obsuresthe Lorentz transformation properties of the �elds. There is, however, aspeial subgroup of the Lorentz group, under whih the light one oordinateshave simple linear transformation properties. If Li;j are the angular momentaand Ki are the boosts, the generators of this subgroup areLi;j; M+;� = K1; M+;i = Ki + L1;i; (5)where the indies i and j run from 2 to D + 2. It turns out that invarianeunder all the generators, with the sole exeption of K1, is rather trivial [4℄.The non-trivial transformation generated by K1 orresponds to saling of x+and p+ by a onstant u: x+ ! x+=u; p+ ! p+=u; (6)leaving the transverse momenta q unhanged. As we go along, we will hekthe invariane the invariane of our equations and our results under this saletransformation. However, in this paper we will not investigate the problemof invariane under the full Lorentz group 2Let us hek the sale invariane of (2) and (3). In eq. (2), the exponentialis learly invariant, and the prefator 1=(2p+) is the integration measurethat makes integration over p+ invariant. The ation (3) and the boundaryonditions (4) are also invariant if the �elds transform aording toq(�; �)! q(u�; u�); b; (�; �)! b; (u�; u�): (7)3. The Complete World Sheet Ation For m=0It is possible to inlude the boundary onditions of eq.(4) in the ationitself, rather then imposing them by hand [2,3,4℄. What follows is a ondensedversion of the treatment given in [3,4℄. The omplete world sheet ation inthe zero mass ase an be written as a sum of four terms:S = Sm + Sg + Sg:f + Sf : (8)2The problems of Lorentz invariane and renormalization are losely related. See [12℄for an investigation of both problems in the light one formalism.7



Sm, the matter ation, and Sg, the ghost ation, are given bySm = Z p+0 d� Z �f�i d� ��12q02 + �y � _q� ;Sg = Z p+0 d� Z �f�i d� �b0 � 0 + ��b � b + � � � � : (9)Here the boundary onditions on the matter and ghost �elds are implementedby means of the Lagrange multiplier �elds y, �b and �. The �eld � is a deltafuntion on the boundaries(solid lines) and zero in the bulk, in order to ensurethat the boundary onditions are imposed on the boundaries and not in thebulk. We will shortly give an expliit onstrution for � in terms of fermioni�elds. Sg:f is the gauge �xing term given bySg:f = Z p+0 d� Z �f�i d� ��12 �� �2y2� ; (10)where � is a onstant and �� is omplementary to �; it vanishes on the bound-aries and is equal to one everywhere else. In the absene of this term, theintegration over over y the ation is invariant under a gauge transformationof the form y! y + z��;where z is an arbirary funtion of the oordinates. This gauge invarianeauses the funtional integral over y to diverge in the bulk where �� is zero;�xing the gauge eliminates this divergene. There is also a Faddeev-Popovtype measure fator assoiated with gauge �xing. One an see the need for itas follows: The integral over y is Gaussian away from the boundaries and itan expliitly be evaluated, resulting in a singular ontribution that dependson the gauge �xing parameter �. If we regulate this singular expression bydisretizing the � oordinate into segments of length a0, we have a produtof the form Y(a0�2)�D=2:This is an unwanted fator resulting from gauge �xing. It an be anelledby introduing a ompensating measure fator in the y, or by hoosinga0�2 = 1: (11)From now on, we will assume that � is �xed by this relation. We wouldlike to point out that in the earlier work, for example referene [5℄, � was8



Figure 3: Solid and Dotted Linesleft arbitrary. It turns out that as a onsequene of eq.(28), the string slopeparameter, eq.(42) omes out �nite without any need of renormalization.It remains to speify the fermioni ation Sf . Introduing a two ompo-nent fermion �eld  i(�; �), i = 1; 2, and its adjoint � i(�; �), � and �� of eqs.()an be expressed as� = 12 � (1� �3) ; �� = 12 � (1 + �3) : (12)To see how this works, it is best to disretize the � oordinate into segmentsof length a, whih also helps regulate the fermioni setor. This disretizationis pitorially represented in Fig.3 by horizontal lines at onstant �, spaeddistane a apart. The boundaries are marked by solid lines as before, andthe rest of the spae (the bulk) is �lled with dotted lines. If we identify thespin up omponent of the fermioni �eld (i = 1) with the dotted lines andthe spin down omponent (i = 2) with the solid lines, � and �� are then thespin down and spin up projetion operators. Therefore, � = 1 on solid linesand it is zero on dotted lines, as stated before, and the opposite holds for ��.We have so far introdued two uto� parameters, a and a0. All the resultsobtained until setion 8 refer to the uto� model regularized by these twoparameters. In setion 8, we will show how the uto� dependene an beeliminated by means of mass renormalization. Unfortunately, in this paper,we will not have muh to say about the renormalized model.9



With these preliminaries out of the way, the fermioni ation is given bySf = Xn Z d� �i � n _ n � ~gD � n�1 n�! Z p+0 d� Z �f�i d� �i � _ � ~gD � �1 � : (13)The �rst line is the ation in terms of disretized fermions n(�) =  (na; �);and the seond line is in terms of ontinuum fermions. Sine the anonialantiommutation relations are in terms of a Kroeneker delta in the �rst aseand a Dira delta in the seond ase, these two fermions di�er in normal-ization by a fator of pa. The �rst term in the ation represents the timepropagation of the free fermion without spin ip, the solid and dotted linespropagating unhanged. The seond term, in ipping the spin, onverts asolid line into a dotted line and vie versa. This spin ip represents the �3interation and it is aompanied by the oupling onstant ~g, whih we havesaled by a fator of D for later onveniene. As it will beome lear later,this is neessary to have a non-trivial large D limit; otherwise, the theorywould be non-interating in this limit. Note that, with this saling, largeD is the same as strong oupling. Now if ~g is taken to be a onstant, aswas done in the earlier work [3,4,5℄, then the world sheet �eld theory wouldreprodue only the exponential in eq.(2), and the fator 1=(2p+) would bemissing. Later, we will show how to take are of this fator in the mean�eld approximation by allowing it to beome a funtion of the dynamialvariables.We will now rewrite the full ation, olleting the terms for Sm, Sg:f andSf , but exluding Sg. We will argue later that the inlusion of Sg does nota�et the dynamis of the problem. With this omission, S is given byS = Z p+0 d� Z �f�i d��� 12q02 + i � _ � ~gD � �1 + 12 y � _q � (1� �3) � 14�2y2 � (1 + �3) �: (14)Let us hek the sale invariane of this ation. If under saling, the �elds q,y and the fermions transform asq(�; �) ! q(u�; u�); y(�; �)! y(u�; u�); (�; �) ! pu (u�; u�); � (�; �)! pu � (u�; u�); (15)10



then all the terms are invariant exept the interation term proportional to~g and the gauge �xing term proportional to �2. These two terms beomeinvariant only by demanding that ~g and �2 transform by~g ! u~g; �2 ! u�2: (16)We will eventually �x �2 by setting a0�2 = 1, as in eq.(11). This brings upthe question whether the lattie spaings a and a0 in the � and � diretionstransform under saling. It is unusual to assign transformation propertiesto a uto�; however, we will argue that in this ase it is quite natural. Forexample, if we split the interval from � = 0 to � = p+ in N segments oflength a, it is lear that under saling, N, being an integer, does not hange,and therefore, a must transform like p+. A similar argument applies to a0,so we must have a! a=u; a0 ! a0=u (17)under saling. This shows that �2, �xed by eq.(11), sales orretly. We willsee that the same is true for ~g in setion (6).4. The Mean�eld ApproximationThe mean�eld method as applied to this problem was developed in [3℄and [5℄. We will mainly follow the treatment given in [5℄, identifying themean �eld method with the large D limit. Unlike in [5℄ however, there willbe no supersymmetry on the world sheet. We notie that the ation (14)represents a vetor model, whih an be solved in the large D limit [13℄. Thestandard approah is to replae the salar produts of the vetor �elds y andq, namely y � _q and y2, by their vauum expetation values. The funtionalintegral over the remaining �elds is arried out exatly, and the resultinge�etive ation is minimized with respet to the vauum expetation values.An eÆient way of arrying out this program is to introdue two omposite�elds �1 and �2 by adding a term �S to the ation:S ! S +�S;�S = Z p+0 d� Z �f�i d� ��1(D�1 � y � _q) + �22 (D�2 � y2)� ; (18)where �1;2 at as Lagrange multipliers. All we have done is to rename theomposite �elds y � _q and y2 as D�1 and D�2. The fators of D are naturalsine eah of these omposite �elds is a sum of D terms. After this renaming,11



the Gaussian integration over y an be done, and the ation an be rewrittenin the following form:S + �S ! S1 + S2 + S3;S1 = Z p+0 d� Z �f�i d�  �12 q02 + �212�2 _q2! ;S2 = D Z p+0 d� Z �f�i d� ��1�1 + 12�2�2� ;S3 = Z p+0 d� Z �f�i d� �i � _ �D ~g � �1 + D2 � ��1(1� �3)� 12�2�2(1 + �3)� � :(19)In the large D limit, �1;2 and �1;2 an be replaed by their vauum ex-petation values:�1 ! �1;0 = h�1i; �2 ! �2;0 = h�2i; �1 ! �1;0 = h�1i; �2 ! �2;0 = h�2i;(20)and therefore these �elds beome lassial in this limit. In addition, animportant simpli�ation is ahieved by setting the total momentum p arriedby the whole graph equal to zero:p = Z p+0 d� q0 = 0:This on�guration, whih an always be reahed by a suitable Lorentz trans-formation, allows us to impose the periodi boundary onditionsq(� = 0; �) = q(� = p+; �):The advantage of hoosing this on�guration is that it is translationally in-variant in both the � and the � diretions, and onsequently the lassial�elds �1;2 and �1;2 an be set equal to onstants independent of oordinates.It then follows that A2 = �21=�2 ! �21;0=�2;0 (21)tends to a onstant in the limit of large D. We note that S1 in eq.(19) is thestandard string ation, with the slope �0 given by�02 = A24 = �21;0=4�2;0: (22)12



In general, this a utuating dynamial �eld, so it is far from lear that S1represents a real string with a onstant slope. In the large D limit, however,sine A2 tends to a onstant, so does the slope, and, if this onstant is positiveand di�erent from zero, a real string has formed. We will later see that thisonstant is never negative; however, it ould vanish. In that ase, we havea zero slope string theory, whih is another name for a �eld theory. Toonlude, there is string formation only if the ground state expetation valueof A2 is non-zero; otherwise, we have a �eld theory. Therefore, the groundstate expetation value of A2 serves as an order parameter that distinguishesbetween the �eld theory limit and string formation. In the leading large Dlimit, this expetation value will turn out to be non-zero if the parameters ofthe model are in a suitable range, endowing the string with a onstant non-zero slope. After the orretions to the large D limit are taken into aount,the string slope beomes dynamial and it an utuate.If we replae A2 by its onstant expetation value, the funtional integra-tion over q in S1 an easily be done, with the resultS1 ! i2 DTr ln ���2� + A2�2��= �D4� (�f � �i) Z dkXn2Z ln (2�np+ )2 + A2k2! : (23)This needs a ultraviolet uto� in the variable k to make sense, so we introduea smooth uto� funtion f(k=�) by lettingZ dkXn ln (2�np+ )2 + A2k2!! Z dk f(k=�)Xn ln (2�np+ )2 + A2k2! : (24)This expression is not yet onvergent, but the divergene is an additive on-stant independent of A2. Sine the mean�eld equations only invove thederivative S1 with respet to A2, we an safely make the subtrationS1(A2)! S1(A2)� S1(0);and arrive at the �nite resultS1(A2)� S1(0) = �D4� (�f � �i) p+jAj Z dk k f(k=�)� 2�23jAjp+! : (25)In any ase, if we did not drop the ghost ation Sg, this additive onstantwould be anelled by the ontribution from the ghost setor [5℄.13



The integral in the �rst term on the right is quadrati in the uto�; forthe sake of simpliity, we ould just as well impose a sharp uto� and setZ dk k f(k=�) = �2:In any ase, a rede�nition of the uto� would yield the same result. In therest of the paper, we will fous only on the uto� dependent terms, and so,from now on, we will setS1 ' �D2� (�f � �i)jAj p+�2: (26)What we are doing is to study the uto� theory prior to renormalization.The reason for doing so is twofold: The uto� theory is of interest by itself;for example, in setion 7, we will �nd string formation for a range of thevalues of the oupling onstant. Also, we want to renormalize the groundstate energy by introduing a mass ounter term. To do this, we have tolearn about the uto� dependene of various quantities by �rst studying theuto� theory.Eq.(25) ould also be obtained by appealing to standard results fromstring theory [8,9℄. Saling q by q! q=A;the tr ln of eq.(23) is transformed intoTr ln�� 1A �2� + A�2�� :But the alulation of this Tr ln is the same as alulating the ground stateenergy of a string with the onstant bakground world sheet metri given byg0;0 = A; g1;1 = 1=A; g0;1 = g1;0 = 0; (27)and the result is the same as in eq.(25). In string theory, the uto� dependentterm, whih ontributes to the energy per unit length, is anelled by aounter term. The �nite term is the famous Casimir term whih �xes theinterept.Although there is this simple onnetion between our model and the stan-dard string theory, we would like to emphasize that there are also signi�ant14



di�erenes. For example, the uto� dependent term in string theory is a pureonstant and it an be dropped without disturbing the dynamis. In on-trast, the uto� dependent term here is proportional to A2 = �21;0=�2;0, whihis a dynamial quantity. Also, in our ase, the oordinates � and � are �xedone for all, and unlike in string theory, there is no general reparametriza-tion invariane. For example, one annot eliminate the dependene on A bymapping the metri given by eq.(27) intog0;0 = g1;1 = 1; g0;1 = g1;0 = 0:We have so far introdued two di�erent uto�s in the � diretion; namely,a0 in eq.(11) and � in eq.(24). These are in fat related: If, for example, themomentum spae onjugate to � is ompati�ed, the orresponding periodan be identi�ed with the uto� �. The lattie spaing a0 is then related toit by a0 = 2�� : (28)5. The Fermioni AtionIn this setion, we will arry out the funtional integral over the fermionsin S3, eq.(19), with �1 and �2 replaed by their oordinate independentexpetation values, or the mean values, �1;0 and �2;0. To avoid divergenes,we �rst regulate it by disretizing the � oordinate on a lattie of spaing a.There is then a omplete deoupling of the di�erent lattie sites, and at eahsite, we have a two level quantum mehanis problem. Instead of workingwith the ation, it is easier to diagonalize the orresponding Hamiltonian.The total Hamiltonian an be written as a sum of N mutually ommutingHamiltonians, with N = p+=a:H = Xn Hn;Hn = D �~g � �1 � 12 � ��1;0(1� �3)� 12�2�2;0(1 + �3)� ��=�n : (29)Ating on spin up and spin down states (dotted and solid lines), Hn, theHamiltonian at the site � = �n = na, redues to a two by two matrix:Hn ! D 12�2�2;0 ~g~g ��1;0 ! (30)15



Diagonalizing, we have the energy levelsE�n = D2 0�12�2�2;0 � �1;0 �s(12�2�2;0 + �1;0)2 + 4~g21A : (31)In general, we expet the level orresponding to the minus sign to beenergetially favored; however, we will keep both options open for the timebeing.Eq.(31) gives the energy of a fermion loated at a single lattie site �n =na; the total fermioni energy is gotten by multiplying this by N = p+=a.Combining the fermioni ontribution with those oming from S1 and S2,eqs.(26) and (19), the total ation is given byS� = Dp+(�f � �i)�� 2�a02 j�1;0j=p�2;0 + �1;0�1;0 + 12�2;0�2;0� 12a�� � 12aq�2+ + 4~g2�; (32)where we have rewritten A in terms of �'s (eq.(21)) and de�ned�� = 12�2�2;0 � �1;0:Sine this ation is proportional to D, in the limit of large D, it an be eval-uated using the saddle point method. This amounts to using the equationsof motion in the ation. Varying �� gives�2;0 = �2(�1;0 + 1a): (33)It is onvenient to de�ne the variable x by�1;0 = �x=a;so that �2;0 = �2a (1� x): (34)x will turn out to be positive, so we an drop the absolute value signs fromnow on. The equation of motion with respet to �+ gives��+ = �~g 1� 2xpx� x2 ; (35)16



and the � signs in this equation are orrelated with the � signs in eq.(31).Here, as well as in eq.(31), we have �xed the sign of ~g to be positive, whih analways be ahieved by a rede�nition of the � signs in front of it. Substitutingthese results into eq.(32), the orresponding energy, related to the ation (32)by S� = �(�f � �i)E�;an be written asE� = Dp+0� 2� x�� a02qa(1� x�) � 2~ga qx� � (x�)21A : (36)In the �rst term on the right, the uto� � has been traded for a0 through� = 2�=a0 (eq.(28)). Here, x� are the values of x that minimize the abovetotal energy for the � solutions.The eigenvetors of the Hamiltonian Hn (eq.(29)) are also of interest.Denoting the normalized eigenvetors orresponding to � signs of the energyby  b�1b�2 ! ;we have b�1 = �s 12 �1� �+p�2++4~g2� = �p1� x�;b�2 = s12 �1� �+p�2++4~g2� = px�: (37)Let us reall the physial signi�ane of these matrix elements: The proba-bilities of having a dotted line (spin up) for the � solutions are given by(b�1 )2 = 1� x�; (38)respetively. Similarly, the probabilities of having a solid line (spin down)for the � solutions are given by (b�2 )2 = x�: (39)From this probability interpretation for x, it follows that0 � x� � 1; (40)17



whih we have already taitly assumed. Otherwise, for example, eqs.(35,36)would not make sense.From eqs.(37), it is easy to show that12h � (1� �3) i = h�i = x�a (41)for both � solutions. We shall see below that (eq.(42)) x is the order pa-rameter that distinguishes between �eld theory and string theory: A nonvanishing x signals string formation, whereas x = 0 orresponds to a zeroslope string, whih is another name for �eld theory. The equation aboveorrelates x with the expetation value of the fermioni bilinear � 2 2, so oneould as well think of this bilinear as the order parameter. On the other handthis bilinear is the number operator that ounts solid lines: A non vanishingexpetation value for it means that a �nite proportion of the area of the worldsheet is overed by the solid lines; in other words, solid lines have ondensedon the world sheet, leading to string formation. We would like to stress thatthis onnetion between ondensation of solid lines on the world sheet andstring formation is quite robust; it is valid independent of the approximationsheme used to ompute x�.In the language of Feynman graphs, ondensation of solid lines meansthat a single graph of asymptotially in�nite order is dominating the sumover planar graphs. It is interesting to note that this was exatly the pitureproposed in the very �rst papers that attempted to dedue string formationfrom Feynman graphs [14,15℄.The next step is to determine x� by minimizing the total energy for eahsolution. Sine both terms on the right hand side of eq.(36) are positive forthe + solution and they have opposite signs for the � solution, we expetthat � solution represents the ground state. We annot quite alulate x�yet, sine ~g will turn out to depend on x, and we have �rst to determine thisfuntional dependene. This will be done in the next setion, but sine, fromeq.(34) �02 = �21;04�2;0 = a �2(x�)24(1� x�) ;and taking �2 = 1=a0 (eq.(28)), then�02 = a(x�)24a0(1� x�) : (42)18



Therefore, if x� is non-zero, we an easily see that the slope parameter willalso be non-zero ; onversely, x� = 0 means that the slope is zero. Inreahing this onlusion, we have assumed, as we have done throughout thispaper, that the ratio of the two lattie spaings, a=a0, whih is sale invariant(eq.(17)), is �nite. Sine this relation between the two uto� parameters isessential for having a �nite slope, we would like to argue that it is requiredby Lorentz invariane. In fat, if we instead allowed a more general relation,say, a0 = f(a);it is easy to see that, unless f is of the formf(a) =  awhere  is a onstant, invariane under saling (eq.(17)) would be violated.This would in turn imply violation of Lorentz invariane. As a bonus, weend up with a �nite slope, with no need of renormalization. In ontrast, weshall see that the other parameter of string theory, the interept, is uto�dependent and needs renormalization. We note that there is nothing in theproblem so far that �xes the ratio a0=a, and therefore, a new parameter, inaddition to the oupling onstant, has to be introdued into the model. It ispossible that the imposition of full Lorentz invariane will eventually �x thisparameter.What about the + solution? In this ase, both terms are positive semidef-inite, so learly, x+ = 0 minimizes the energy, and the probability of having asolid line is zero. This is the (trivial) starting point of standard perturbationtheory; namely, no Feynman graphs and energy equal to zero. When higherorder terms in 1=D are taken into aount, we expet x+ to utuate andallow the formation of solid lines, thereby generating higher order Feynmangraphs. To summarize, x ould be non-zero only for the � solution, leadingto string formation. On the other hand, the + solution always has x = 0,orresponding to perturbative �eld theory. The ground state energy of the+ solution is either greater than or equal to that of the � solution.6. The Interation VertexAs we have stressed earlier, following eq.(13), taking ~g to be a onstantamounts to negleting the fator of 1=(2p+) in the world sheet propagator(eq.(2)). We will now show that this fator an be taken into aount in theleading mean �eld approximation, and as a result, ~g beomes a funtion of the19
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3Figure 4: Two Vertiesvariable x. We now proeed to alulate this funtion. It turns out that, forour purposes, it is more onvenient to assoiate this fator 1=(2p+) with theverties, rather than with the propagators. Consider two interation verties,with the propagators labeled 1,2 and 3 meeting at the vertex as shown inFig.4. In one of them, a solid line turns into a dotted line, and in the other,the reverse takes plae. With the �rst vertex, we assoiate a fatorV+ = g8 p+1 p+2 p+3 ; (43)and with the seond vertex, a fator ofV� = g: (44)Here, g is related to the oupling onstant of the �3 interation. It is easyto hek that this is equivalent to assigning a fator of 1=(2p+i ), i = 1; 2; 3,to eah of the propagators labeled by i. This assignment is not symmetrialbetween V+ and V�; but this is not a problem sine only the produtV = V+ V�matters. For example, we ould interhange the roles of these two verties,or we ould make a symmetrial assignment at the ost of introduing square20



roots. For the time being, the above assignment will be onvenient to workwith; later, we will show how to restore the symmetry between V+ and V�.At this point, one may wonder about the preise relationship betweeng and the oupling onstant of the �3 interation. Of ourse, this dependson renormalization , and therefore, to relate the oupling onstant of �eldtheory to that of the world sheet, one has to ompare the renormalizationshemes used in eah ase. Here we will simply treat g as an e�etive ouplingonstant, and we will not try to ompare it to the �eld theoreti onstant. Itis of interest to note that g is a sale invariant onstant, as ontrasted to ~g(eq.(16)), so it passes at least one important test for being a Lorentz salar. Itis also �nite (uto� independent), at least in the lowest order approximation.This is beause, for example, if it depended on a in non-trivially, it ould notbe sale invariant, sine a transforms under saling (eq.(17)). So it may bemore appropriate to think of g as a renormalized oupling onstant, ratherthan a bare one. Therefore, we have to do mass renormalization (setion 8),but we do not have to worry about oupling onstant renormalization.Eq.(43) refers to a vertex where eah leg arries a �xed momentum p+i .This means that when we write down the vertex in the language of �eldtheory, we have to somehow express the p+'s in terms of the loal �elds. Todo this exatly is a diÆult problem; however, there is a simple answer inthe leading order of the mean�eld approximation. In this approximation, wean replae the right hand side by its average value:V+ ! g h 18 p+1 p+2 p+3 i: (45)To ompute the indiated average, one has to �gure out the probability of o-urene of a on�guration with spei�ed p+'s. We reall from the last setionthat, in the leading order of the mean �eld approximation, the probabilityof having a dotted line is given by 1 � x and that of having a solid line byx (eqs.(38,39)). Here x is a onstant independent of the oordinates, to bedetermined by minimizing the ground state energy. Consider the on�gura-tion in Fig.5 of the vertex V+, where the momenta p+i disretized in steps oflength a as usual, with ni dotted lines assoiated with the propagator labeledby i, and p+1 = (ni + 1)a; n3 = n1 + n2 + 1:The probability of having suh a on�guration, Pn1;n2, depends only on theinoming propagators 1 and 2, whih ompletely �x the on�guration. Fur-21
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Figure 5: Another Vertexthermore, in the leading order of the mean �eld approximation, the proba-bility for the ourene of a olletion of solid and dotted lines is the produtof the probabilities for the ourene of eah individual line. Therefore, wehave, Pn1;n2 = Pn1 Pn2; (46)where Pn, the probability for a single propagator is given byPn = x (1� x)n: (47)The hypothesis about the fatorization of probabilities used to derive theabove results implies lak of orrelation between di�erent lines. This is in fatthe basi hypothesis of the mean �eld method: To the leading order, eahline propagates independently in the bakground of the mean �eld x, and theorrelations between di�erent lines show up only in higher order orretions.22



Putting together eqs.(45,46,47), we have,V+ = g F (x)8 ; (48)where F (x) = 1Xn1=0 1Xn2=0 Pn1;n2(n1 + 1)(n2 + 1)(n3 + 1) a3= 1Xn1=0 1Xn2=0 x2 (1� x)n1+n2(n1 + 1)(n2 + 1)(n1 + n2 + 2) a3 : (49)In Appendix A, it is shown that this sum an be onverted into a singleintegral. After this simpli�ation, we have the following expression for V+:V+ = g x2(1� x)2 a3 Z 1�x0  1y (ln(1� y))2! dy: (50)At this point, it is possible to write down a fermioni interation term,using V+ and V� = g. All we have to do is to replae the term ~g � �1 ineq.(14) by V+ � 1 2 + V� � 2 1:However, instead of this awkward looking non-symmetri expression, we pre-fer to use a symmetrized expression. Sine in alulating a general graph,V+ and V� ome in pairs and always in the form of the produt V� V+, weare free to rede�ne individual V 's as we wish, so long as the produt remains�xed. A symmetrized expression orresponds to the hoie V+ = V�. Thisamounts to setting ~g2 = a V+ V�: (51)The sudden appearene of a fator of a in this equation requires an expla-nation. Consider a typial solid line (Fig.3), loated at some � = �0, withfators V+ and V� attahed at the ends of the line. As explained earlier, onehas to integrate over the position �0 of the oordinate. However, in derivingeq.(50) for V+, the � oordinate was �rst lattiized with a spaing a. There-fore, instead of an integral, we really have a sum over the disretized positionsof the solid line. Converting this sum into an integral in the ontinuum limitintrodues a fator of a througha X�n ! Z d�:23



Combining eqs.(44,50,51), we rewrite ~g as~g = gxa(1� x)  Z 1�x0  1y (ln(1� y))2! dy!1=2 : (52)We note that this expression for ~g has the orret saling properties, disussedat the end of setion 3. Sine g and x are sale invariant onstants, ~g salesas 1=a (see eq.(17)), whih is the orret result.7. Minimizing The Ground State EnergyWe will now rewrite the ground state energy E� (eq.(36)), ombiningsome onstants to simplify the expression. We set�2 = 1=a0and de�ne the onstant  by  = 2�(a=a0)3=2: stays �nite in the limit when both uto� parameters a and a0 go to zero,provided that the ratio a=a0 is kept �nite. It is then onvenient to eliminatea0 in favor of  and a, and to express ~g in terms of x through eq.(52), withthe result E� = Dp+a2   xp1� x � 2gh(x)! ; (53)where h(x) = x3=2(1� x)1=2  Z 1�x0 1y (ln(1� y))2 dy!1=2 : (54)We make a ouple of observations regarding this formula: Energy, anextensive quantity, is proportional to p+, the length of the � interval, as itshould be. It is also proportional to 1=a2, and so it diverges in the limita! 0. This is not surprising, sine E is equal to p�, and in the frame p = 0that we have hosen, the produt p+p� is equal to the square of the mass ofthe (string) state. If we denote the mass of the lowest string state by m0,then m20 = p+E�: (55)This is the bare mass, whih we expet to be uto� dependent without renor-malization. In the next setion, we will see how this uto� dependene an24
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Figure 6: f(x) = x=p1� x is the dashed line and f(x) = �20 h(x) is thesolid linebe removed by introduing a suitable mass ounter term. Finally, note thedi�erene in the sign of the two terms; this is the key to the existene ofa non-trivial minimum. Also, m20, being proportional to (p+=a)2, is saleinvariant (see eqs.(6) and (17)). Sine mass is a Lorentz invariant quantity,this is as it should be.Before proeeding further, we note one more simpli�ation: Taking ad-vantage of the freedom to renormalize the oupling onstant g and to rede�nethe uto� parameter a, we an set the onstant  equal to unity, so thatE� ! Dp+a2  xp1� x � 2gh(x)! : (56)However,  is not ompletely eliminated from the problem. For example,the string slope �02 still depends on a=a0 and therefore on  (eq.(42)). Thebottom line is that, whether one alls it  or a=a0, one arbitrary onstantremains in the problem.It remains to searh for the minimum of E� as a funtion of x. In Fig.6,the �rst term in eq.(56), x=p1� x, and the funtion �20 h(x), the seondterm for g = 10, are seperately plotted against x. Both urves start at theorigin, and for small enough g, the �rst term dominates the seond termin absolute value. Therefore, for small g, the minimum of E� is at x = 0,E+ = E� = 0, and we have reovered the perturbative �eld theory as the25
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Figure 7: The solid line represents G(x) at g=1.3 and the dashed line repre-sents G(x) at g=10ground state. Stated another way, the only solution to mean�eld equationsat small oupling onstant orresponds to vanishing order parameter x, andtherefore to the perturbative phase of the underlying �eld theory. As g getsbigger, there is a turning point around g ' 1:3, and past this point, theseond term dominates. The minimum E� now ours at some x 6= 0, E�is negative at this minimum, and it wins over E+ = 0 as the ground state.Therefore, there is a ritial value of g = g, with g ' 1:3, suh that forg < g, the system is in the perturbative phase, and for g > g, it is in thestring phase. In Fig.7, the quantityG = a2E�Dp+ (57)is plotted against x for g = 1:3 and also for g = 10. For the �rst value ofg ' g, the minimum is at x = 0, and for the seond one, it is at x ' 0:625.As g asymptotes to in�nity, the loation of the minimum asymptotes tox ' 7:06, whih oinides with the loation of the minimum of h(x).To summarize, in this setion, we have seen that string formation takesplae if the oupling onstant is larger than a ritial value. However, it isimportant to realize that so far we have been talking about an unrenormalizedtheory. The two physial parameters assoiated with a free string are theslope and the interept, and these should be �nite. We have already seen26
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σ= σ=0 p +Figure 8: A strip of width p+ and thikness �� on the worldsheetfrom eq.(42) that the slope is �nite if the ratio of the two uto� parameters,a=a0 is �nite as a and a0 tend to zero. On the other hand, the interept,whih is given by p+E� (eq.(55)), diverges as a ! 0 beause of the fator1=a2 in eq.(56). We will see in the next setion that, this divergene an beanelled by introduing a suitable bare mass (ounter)term in the originalation.8. Non-Zero MassUp to this point, we have taken the mass parameter in the propagator(eq.(2)) to be zero. It is of ourse important to be able to deal with non-zero mass, sine in any ase, even if we set the bare mass equal to zero, therenormalized mass will in general be di�erent from zero. In partiular, aspointed out in the last setion, the mass squared of the lowest string state, thestring interept, is uto� dependent. We will now show that, by introduinga suitable mass ounter term, we an eliminate this uto� dependene, andtune the interept to any �nite value of our hoie. This should be ontrastedwith what happens in the ritial string theory, where the interept is �xed.We wish to ompute the ontribution to the world sheet ation of the massterm in the propagator. This alulation is greatly simpli�ed by onsideringa thin strip of the world sheet (Fig.8), bounded by two lines loated atonstant � and onstant � +�� in the � diretion, and extending from � = 0to � = p+ in the � diretion. Fig.8 shows a bunh of dotted and solid lines inthis strip, representing propagators that propagate for an in�nitesimal timeinterval �� . The ontribution of the mass term to the path integral, forsmall �� , is of the form 1 + �� M;27



and this an be iterated in the � diretion to getexp ((�f � �i)M) ;so it boils down to alulating M .We will do this alulation using the mean �eld method, along lines similarto the alulation of the vertex in setion 6. Let the number of dotted linesin Fig.8 be n, and the number of solid lines be N � n, where N , the totalnumber of lines, is �xed by N = p+=a;where p+ is the total width of the strip. Denote the ontribution to M fora given value of n by Mn, and reall that the probability of having a dottedline is 1 � x and that of having a solid line is x. To get M , we weigh eahon�guration Mn by the orresponding statistial fator and add:M =Xn (1� x)nxN�nMn: (58)It remains to alulate Mn, by olleting the mass dependent terms omingfrom various propagators. The relevant term in eq.(2) an be rewritten asexp � m2��2(�i+1 � �i)!! 1� m2��2(�i+1 � �i) ; (59)where �i are the � oordinates of the solid lines, with i = 1; 2; :::; N � n� 1.We note that, in this ase, the p+ in eq.(2) orresponds to �i+1 � �i, thedistane between two adjaent solid lines. Also, we �nd it onvenient toadopt Eulidean metri for this alulation and therefore the fator of i hasbeen dropped. Finally, to get Mn, one has to sum over the positions of thesolid lines Mn =X�i  � m22(�i+1 � �i)! : (60)This sum is evaluated in Appendix B, with the resultM = p+ m2 x2a2(1� x) ln(x): (61)Comparing this to the energy with the energy in the absene of bare mass(eq.(56)), we note the ommon fators of p+ and 1=a2, but we also see thatwe have to sale the mass by m2 ! Dm228
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Figure 9: The dashed urve is G(x) for m2 = 1 and the solid urve is G(x)for m2 = 20so that the terms in the expression for the energy all have a ommon fator ofD. Otherwise, the mass term would drop out in the largeD limit. Combiningeqs.(56) and (61), the total energy, inluding the mass, isE� = Dp+a2 � x(1� x)1=2 � 2g x3=2(1� x)1=2  Z 1�x0 ln2(1� y)y dy!1=2� m2x21� x ln(x)�: (62)Sine x � 1, the ontribution of the mass term to the total energy is positive.Remembering that the sum of the other two terms was negative, we see thatthe mass term tends to raise the ground state energy, in agreement with whatone would expet.In Fig.9, G (eq.(57)) is plotted against x for g = 10, and for two di�erentvalues of m2: m2 = 1, the dashed urve and m2 = 20, the solid urve. Form2 = 1, the urve is very similar to the one in the massless ase: There isnon-trivial minimum around x ' 0:6. At the larger value m2 = 20, the urveattens and the minimum shifts to x = 0. This means that string formationtakes plae only if the mass is not too large, and the oupling onstant islarge enough. Otherwise, the model is in the perturbative �eld theory phase.At this point, it is important to remember that so far, we have been talk-ing only about the uto� dependent part of the enegy, whih is proportional29



to 1=a2. Similarly, the bare mass term makes a ontribution proportional to1=a2 to the ground state energy. We have seen that string formation takesplae if the oupling onstant is large enough and the mass is suÆientlysmall so that ground state energy is negative. We hasten to add that allof this is before renormalization. Renormalization requires that the uto�dependent part of the ground state energy should be zero. We have seenabove that this an be arranged by suitably tuning the bare mass. Now thequestion is, is there still string formation even after renormalization? Wehave seen above that zero (uto� dependent) ground state energy marks theborderline between the string and �eld theory phases, and so we annot on-lude anything de�nite on the basis of what we have so far. To deide thisquestion, one has to go beyond the uto� dependent part of the ground stateenergy and ompute the �nite ontributions. We have already seen that theseond term on right of eq.(25) is one suh ontribution, but there are alsosimilar �nite terms oming from orretions to eq.(52) for ~g and eq.(61) forM. These alulations are rather involved and they will not be attempted inthis artile, and therefore, the question of whether there is string formationafter renormalization remains open. We hope to return to this problem inthe future.9. Higher Order Contributions To S1So far, we have omputed the leading term in the ation in the large Dlimit, whih is proportional to D. The next order term is D independent, andto ompute it, one has to follow the standard presription of the saddle pointmethod and expand the �elds �1;2 and �1;2 around their mean value, keepingonly the quadrati terms. The funtional integrals an then in priniple bedone, produing the desired term in the ation. This alulation was arriedout in [5℄; here, we will briey review it and also disuss its signi�ane andits renormalization.We �rst notie that there are two di�erent soures of higher order terms:Those oming from S1 and those oming from the rest of the ation, suh asthe fermioni setor, ~g and the mass term. The ontribution oming fromS1 has a speial signi�ane: It ontains the kineti energy term for a newdegree of freedom whih was not present in the original ation. The rest ofthe higher order ontributions do not seem to have any speial signi�ane,so we will not onsider them any further.Consider the e�etive ation resulting from arrying out the funtional30



integration over q in S1(eq.(23)):S1 ! i2DTr ln ���2� + A2�2�� ;where A2 an be split into the zeroth order term A20, whih is independentof the world sheet oordinates, plus a utuating term �A2:A2 = A20 +�A2; A20 = �21;0�2;0 = a0a x21� x; �A2 = aa0 2x� x2(1� x)2 �x: (63)We then expand in powers of �A2 in the form of a seriesS1 = S(0)1 + S(1)1 + S(2)1 + � � � (64)Sine �A2 is expressible in terms �x, this expansion an also be onvertedinto an expansion in powers of �x.The leading ontributionS(0)1 = i2DTr ���2� + A20 �2� �was already omputed in setion 4. Sine we are expanding around a saddlepoint, S(1)1 vanishes. The fous of our attention here is the term seond orderin �A2:S(2)1 = � iD4 Tr �(�2� � A20 �2� )�1�� (�A2)�� (�2� � A20�2� )�1�� (�A2)��� : (65)This term ontains both a logarithmially divergent and also a �nite part.We will �rst ompute the divergent part, and we will later see that we donot need to know the �nite part.Rewriting it in momentum spae, we haveS(2)1 = � iDp+16�2 Z d2k0 I(k0)� ~A2(k0)� ~A2(�k0); (66)where � ~A2(k0), k0 = (k00; k01), is the Fourier transform of �A2(�; �), andI(k0) = Z d2k (4k20 � (k00)2)2((2k1 + k01)2 � A20(2k0 + k00)2) ((2k1 � k01)2 � A20(2k0 � k00)2) :(67)31



In the the expression for I, we have let p+ ! 1 and replaed the disretesums over the variables k1 and k01 by integrals. Clearly, this is permissiblewhen one is alulating an ultraviolet divergent term, whih is sensitive onlyto the large momentum limit.Next, we expand I in powers of k0. The zeroth order term was alreadyinluded in the alulation of S(0)1 , the �rst order term vanishes, and termswith powers of k0 greater than two are onvergent. The logarithmi diver-gene omes exlusively from the quadrati terms, given below:I ' i�2A50 �A20 (k00)2 � (k01)2� Z dkk : (68)This integral is both ultraviolet and infrared divergent. The infrareddivergene is due to letting p+ !1; it an be taken are of by introduing alower limit of roughly 1=p+ in the integral over k. To eliminate the ultravioletdivergene, the integral is uto� at the upper limit k = �, where � is thesame uto� used in setion 4 (eq.(25)), with the resultZ dkk ! ln(� p+): (69)Combining eqs.(66) and (68) and transforming bak to the position spaegivesS(2)1 ' D ln(� p+)32� A50 Z p+0 d� Z �f�i d� �A20 ��� (�A2)�2 � ���(�A2)�2� : (70)This equation tells us that �x represents a new propagating degree of free-dom, with its own kineti energy. The promotion of a onstrained �eld into apropagating degree of freedom should be familiar from other two dimensionalmodels [16,17℄. Sine x is related to the fermioni bilinear � through eq.(41),it is reasonable to interpret this new degree of freedom as a bound state of apair of fermions.We would like to say a few words about the renormalization of this result.We an get rid of the fator of D and the logarithmi fator if we sale �A2by letting �A2 !  16�2D ln(� p+)!1=2 �A2:As a result, this term is now of order zero in the largeD expansion, as opposedto terms alulated in the previous setions, whih were proportional to D.32



Also, the logarithmi divergene has dissappeared. We note that, the �niteterms whih we have not alulated (see the disussion after eq.(65)), whihare also zeroth order in D, will all be suppressed by this logarithmi fator.Of ourse, we still expet ontributions from the higher order terms in thelarge D expansion.It may be of some interest to express these results by writing down asigma model. Sine the order parameter x has now beome a dynamial�eld, we will rename it �, and x is now the expetation value of �. Afterexpressing A2 in terms of x! � throughA2 = aa0 �21� �;we an rewrite the resaled version of eq.(70) in terms of �, and then ombineit with eq.(62) to form the sigma model:S� = Z p+0 d� Z �f�i d�  (a0a )3=2 (2� �)(1� �)1=22�4 ���02 + _�2�� V(�)! : (71)To the leading order in D, the potential V in this equation is given byV(�) = � 1p+ E�(�);and E� is the ground state energy(eq.(62)), with the argument x replaedby �.We note that, the slope parameter is no longer a number, but it is nowgiven by �02 = a4a0 �21� �; (72)and so it beomes a utuating dynamial �eld. We believe that this is theruial di�erene between the fundamental strings of string theory and the�eld theory strings of the type developed in the present work. In string the-ory, the slope is �xed, whereas here, it is a dynamial variable. In partiular,it an utuate and make a transition from the saddle point x 6= 0 to theother saddle point x = 0. We reall from setion 5 that this latter saddlepoint orresponds to perturbative �eld theory. In the present work, the worldsheet on�guration we have hosen is a ylinder of in�nite extent in the �diretion. For suh a on�guration, and for the uto� theory before renor-malization, we have shown that the string forming saddle point at x 6= 0 is33



energetially favored. However, for other on�gurations of the world sheet,the other saddle point at x = 0 may be more important. For example, theother saddle point may ontribute to a world sheet on�guration appropriateto a sattering proess. What we have in mind is, for example, a high energyand �xed angle sattering proess, whih is represented by the sattering ofthe fundamental onstituents (partons) of a �eld theoreti model. It wouldbe very nie if the saddle point x = 0 was dominated this proess, whereasthe the other saddle point, x 6= 0 dominated the high energy Regge limit.This would then explain how two di�erent mehanisms, one underlying the\hard" high energy sattering and the other underlying the \soft" high en-ergy sattering, ould oexist. Inspired by the AdS/CFT orrespondene,models of this type have been ostruted [18,19,20℄. It is of interest to notethat, in these models also the string (Regge) slope is allowed to utuate.ConlusionsThis artile is an extension of the earlier work [2,3,4,5℄ on summing planargraphs by putting them on the world sheet. Although as in the earlier work,our guinea pig theory is still the �3 theory and the approximation shemeused is still the mean �eld method, there is also quite a bit of new material. Inthe previous work, the prefator that appears in the world sheet propagator(eq.(2)) had been omitted; here, we retify that omisssion. Also, up to now,the bare mass of the �eld � was taken to be zero; in this work, we introduea non-zero bare mass into the problem. Prior to the introdution of themass, a uto� was needed to have a well de�ned model, and some physialquantities, suh as the ground state energy, depended on the uto�. Withthe introdution of a mass ounter term, it beomes for the �rst time possibleto renormalize the model by eliminating the uto� dependene.Going bak to the uto� theory, we �nd string formation for a range of thevalues of the mass and oupling onstant. For the values of these parametersoutside this range, the model goes bak to the original starting point, namely,perturbative �eld theory. In the speial ase of vanishing bare mass, this isin agreement with the resuts of the previous work.In ontrast to the model with uto�, we know very little about the renor-malized model. In the future, we hope to ome bak to and study it. Itwould be interesting to �nd out whether there is string formation for anyrange of the parameters of the model.Another interesting problem left open for future researh is to dedue the34



onsequenes of the promotion of the string slope into a dynamial �eld. Asexplained at the end of the last setion, this ould help onnet the Reggeand parton regimes of high energy sattering proesses.AknowledgementsThis work was supported in part by the Diretor, OÆe of Siene, OÆeof High Energy and Nulear Physis, of the US Department of Energy underContrat DE-AC03-76SF00098, and in part by the National Siene Foun-dation Grant No.PHY99-07949. Part of the researh leading to this artilewas done while I was attending the program on QCD and Strings at KITP,Santa Barbara. I would like to thank the organizers of this program.Appendix AIt is useful to derive an expression for V+ that does not involve in�nitesums. For this purpose, we de�ne an auxilliary funtion by~F (x1; x2) = 1Xn1=0 1Xn2=0 (1� x1)n1(1� x2)n2(n1 + 1)(n2 + 1)(n1 + n2 + 2) : (73)The original funtion an be expressed in terms of ~F asF (x) = x2a3 ~F (x1 = x; x2 = x); (74)so the problem redues to evaluating ~F .It is easy to show that ~F satis�es the following di�erential equation: 2� (1� x1) ��x1 � (1� x2) ��x2! 1� (1� x1) ��x1! 1� (1� x2) ��x2! ~F (x1; x2)= 1x1 x2 : (75)This di�erential equation an be integrated partially to give 2� (1� x1) ��x1 � (1� x2) ��x2! ~F (x1; x2) = ln(x1) ln(x2)(1� x1)(1� x2) ;and a further integration leads to the result~F = 1(1� x1)(1� x2) Z 2�x1�x20 dyy ln 1� y(1� x1)2� x1 � x2! ln 1� y(1� x2)2� x1 � x2! :(76)35



∆τ

Figure 10: A speial on�guration of linesFinally, substituting this result for ~F in eqs.(74) and (48), we get the followingexpression for V+: V+ = g x2(1� x)2 a3 Z 1�x0 dyy (ln(1� y))2 : (77)Appendix BIn this Appendix, we will present a derivation of eq.(61), starting witheqs.(58) and (60). Instead of trying to do the statistial sum of eq.(58) fora general on�guration of solid and dotted lines, we will �rst onsider thesimple on�guration, shown in Fig.10, of one solid line at the beginning, andall the rest dotted lines. We will show that the general on�guration an bereahed by iterating this speial on�guration. Also reall from setion 8 thatwe have a thin strip of width �� in the � diretion. The mass ontributionoming from all on�gurations of this type to the path integral is given by~Z(x) = 1Xn=1Pn�1(x) 1� m2��na ! ; (78)where n is the total number of lines and we have expanded to �rst order in�� . The mean �eld ansatz, eq.(47), givesPn(x) = x(1� x)n�1; (79)and substituting in (78), we have~Z(x) = 1 + m2x��a(1� x) ln(x): (80)36



So far, we have been summing over an arbitrary number of lines. However,it will prove onvenient to selet a �xed total number n of lines from the sum.This easily aomplished by introduing a fator of w that keeps trak of thenumber of lines, and lettingKn(x)! Kn(w; x) = xwn(1� x)n�1: (81)Eq.(80) is now replaed by~Z(w; x) = ~Z0(w; x) + �� ~Z1(w; x); (82)where, ~Z0 = w x1� w(1� x) ;~Z1 = m2a x ln(1� w(1� x))1� x : (83)To isolate the ontribution oming from a on�guration with n lines, one hasto expand in powers of w and pik the oeÆient of wn.Now onsider a general on�guration of lines, suh as in Fig.8. Suh ageneral on�guration an be built from the speial on�guration disussedabove (Fig.10) as follows: First iterate the speial on�guration as a geomet-ri series 1Xn=0 � ~Z(w; x)�n = 11� ~Z(w; x) ;and then add to this a sum over arbitray number of dotted lines given by1Xn=0wn(1� x)n = 11� w(1� x) :The result is then the ontribution of the general on�guration to the pathintegral: Z(w; x) = 1�1� ~Z(w; x)� (1� w(1� x)) : (84)We an now extrat M (eq.(58)) from this result as follows: First, pikthe term linear in �� . And then �x the total number of lines to beN = p+=a;37



by expanding in w and piking the oeÆient of wN , with the resultM =  1Xn=1(n� 1) � ~Z0�n�1 ~Z11� w(1� x)!wN = 0B� ~Z0 ~Z1�1� ~Z0�2 (1� w(1� x))1CAwN= m2x2a(1� x)  w ln(1� w(1� x))(1� w)2 !wN : (85)Expanding in powers of w gives w ln(1� w(1� x))(1� w)2 !wN = N�1Xn=1 �1� Nn � (1� x)n: (86)This result an be simpli�ed by notiing that as a! 0, N !1. Therefore,the �rst term in parenthesis on the right hand side is negligible omparedto the seond term, whih is proportional to N. Also, the upper limit of thesum an be hanged from N � 1 to 1. Therefore, as N !1, w ln(1� w(1� x))(1� w)2 !wN ! �N 1Xn=1 1n(1� x)n = N ln(x): (87)Substituting this, with N = p+=a, in eq.(85) for M gives eq.(61), whih wasto be derived.Referenes1. K.Bardaki and C.B.Thorn, Nul.Phys. B 626 (2002) 287, hep-th/0110301.2. K.Bardaki and C.B.Thorn, Nul.Phys. B 652 (2003) 196, hep-th/0206205.3. K.Bardaki and C.B.Thorn, Nul.Phys. B 661 (2003) 235, hep-th/0212254.4. K.Bardaki, Nul.Phys. B 667 (2004) 354, hep-th/0308197.5. K.Bardaki, Nul.Phys. B 698 (2004) 202, hep-th/0404076.6. C.B.Thorn, Nul.Phys. B 637 (2002) 272, hep-th/0203167.7. S.Gudmundsson, C.B.Thorn and T.A.Tran, Nul.Phys. B 649 (2003)3, hep-th/0209102.8. C.B.Thorn and T.A.Tran, Nul.Phys. B 677 (2004) 289, hep-th/0307203.38
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